MORTALITY, LONGEVITY AND EXPERIMENTS WITH THE LEE-CARTER MODEL

Professor Steven Haberman
Cass Business School, City University
AGENDA

- Mortality Trends
- Data and Notation
- Lee-Carter Model: Base
- Lee-Carter Model: Advanced
- Lee-Carter Model: Cohort Effects
- Lee-Carter Model: Risk Measurement
- Concluding Comments
MORTALITY TRENDS

Changes in the shape of mortality curves:

(i) downward trends in mortality rates – at young and old ages;

(ii) an increasing concentration of deaths around the average age at death. This is also described as the **rectangularization** of the survival function;

(iii) the average age at death increasing over time. This is also described as **expansion** of the survival function.

But (ii) changes when we focus on oldest ages: see later.
MALE ENGLISH LIFE TABLE Based on a birth cohort of 100,000
DISTRIBUTION OF AGES AT DEATH CONDITIONAL ON REACHING AGE 65 (ENGLAND AND WALES)

<table>
<thead>
<tr>
<th>Year</th>
<th>Males Median</th>
<th>Males IQR</th>
<th>Females Median</th>
<th>Females IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1851</td>
<td>75.0</td>
<td>70.1 – 80.1</td>
<td>75.8</td>
<td>70.6 – 81.5</td>
</tr>
<tr>
<td>1871</td>
<td>74.8</td>
<td>70.0 – 80.3</td>
<td>75.7</td>
<td>70.6 – 81.4</td>
</tr>
<tr>
<td>1891</td>
<td>74.6</td>
<td>69.8 – 80.0</td>
<td>75.6</td>
<td>70.5 – 81.2</td>
</tr>
<tr>
<td>1911</td>
<td>75.3</td>
<td>70.4 – 80.8</td>
<td>76.9</td>
<td>71.5 – 82.4</td>
</tr>
<tr>
<td>1931</td>
<td>75.8</td>
<td>70.8 – 81.1</td>
<td>77.8</td>
<td>72.4 – 83.3</td>
</tr>
<tr>
<td>1951</td>
<td>76.3</td>
<td>71.1 – 81.7</td>
<td>79.3</td>
<td>73.7 – 84.7</td>
</tr>
<tr>
<td>1971</td>
<td>76.6</td>
<td>71.2 – 82.4</td>
<td>81.2</td>
<td>75.1 – 86.9</td>
</tr>
<tr>
<td>1991</td>
<td>79.0</td>
<td>72.0 – 85.0</td>
<td>83.5</td>
<td>76.7 – 89.5</td>
</tr>
</tbody>
</table>
IMPLICATIONS FOR ANNUITIES AND PENSIONS

- Future mortality trend needs to be identified and incorporated in present value calculations (e.g. prices and reserves).

- Projections involve risk (for the insurer) which needs to be measured and managed.
AGENDA

• Mortality Trends

• Data and Notation

• Lee-Carter Model: Base

• Lee-Carter Model: Advanced

• Lee-Carter Model: Cohort Effects

• Lee-Carter Model: Risk Measurement

• Concluding Comments
ILLUSTRATION OF DATA CONFIGURATION

Typical rectangular data array and targeted projected array.
NOTATION

Data: \((d_{xt}, e_{xt}) \)

- \(d_{xt} \) = number of deaths at age \(x \) and time \(t \)
- \(e_{xt} \) = matching exposure to risk of death with empirical central mortality rate

\[\hat{m}_{xt} = d_{xt} / e_{xt}. \]

Random variables:
- \(D_{xt} \) = number of deaths at age \(x \) and time \(t \)
- \(Y_{xt} \) = response (generic)
AGENDA

- Mortality Trends
- Data and Notation
- Lee-Carter Model: Base
- Lee-Carter Model: Advanced
- Lee-Carter Model: Cohort Effects
- Lee-Carter Model: Risk Measurement
- Concluding Comments
3. LEE CARTER MODELS: BASE VERSION

STRUCTURE

One of the standard benchmark models used in many countries, e.g. US Bureau of Census. Lee and Carter (1992) proposed:

\[
\log m_{xt} = \eta_{xt} + \varepsilon_{xt}, \quad \eta_{xt} = \alpha_x + \beta_x \kappa_t,
\]

where the \(\varepsilon_{xt} \) are IID \(\mathcal{N}(0, \sigma^2) \) variables.

This is a regression framework with no observable quantities on the RHS.
Structure is invariant under the transformations

$$\{\alpha_x, \beta_x, \kappa_t\} \mapsto \{\alpha_x, \beta_x / c, c\kappa_t\}$$

$$\{\alpha_x, \beta_x, \kappa_t\} \mapsto \{\alpha_x - c\beta_x, \beta_x, \kappa_t + c\}$$

and is made identifiable using the following constraints (which are not unique):

$$\sum_{t=t_1}^{t_n} \kappa_t = 0, \sum_{x} \beta_x = 1,$$

and which imply the least squares estimator

$$\hat{\alpha}_x = \log \prod_{t=t_1}^{t_n} \hat{m}_{xt}^{1/n}.$$
\(\alpha_x \): ‘average’ of \(\log m_{xt} \) over time \(t \) so that \(\exp \alpha_x \) represents the general shape of the age-specific mortality profile.

\(\kappa_t \): underlying time trend.

\(\beta_x \): sensitivity of the logarithm of the hazard rate at age \(x \) to the time trend represented by \(\kappa_t \).

\(\varepsilon_{xt} \): effects not captured by the model.
FITTING BY SVD

(Lee and Carter (1992))

A two-stage estimation process: estimate α_x as above. Estimate κ_t and β_x as the 1st right and 1st left singular vectors in the SVD of the matrix $[\log \hat{m}_{xt} - \hat{\alpha}_x]$.

Thus

$$\log(\hat{m}_{xt}) = \hat{\alpha}_x + s_1 u_1(x) v_1(t) + \sum_{i \geq 1} s_i u_i(x) v_i(t)$$

where $s_i, u_i, v_i = (ordered)$ singular values and vectors

and

$$\hat{\beta}_x \hat{\kappa}_t = s_1 u_1(x) v_1(t)$$

subject to the constraints on κ_t and β_x.

Finally, $\hat{\kappa}_t$ are adjusted so that

$$\sum_{all, x} d_{xt} = \sum_{all, x} \hat{d}_{xt} \forall t.$$ where $\hat{d}_{xt} = e_{xt} \exp(\hat{\alpha}_x + \hat{\beta}_x \hat{\kappa}_t)$.
Note on Simple Approximation

(Lee and Carter (1992)); Haberman and Russolillo (2005)

Use least squares regression:

- estimate $\hat{\alpha}_x$ as above
- estimate κ_t as the sum over age of $[\log \hat{m}_{xt} - \hat{\alpha}_x]$
- regress $[\log \hat{m}_{xt} - \hat{\alpha}_x]$ on κ_t without a constant term to estimate β_x
- adjust $\hat{\kappa}_t$ as above to get equality of actual and expected deaths.
Fitting by Weighted Least Squares (Gaussian)

(Wilmoth (1993))
Perform the iterative process

\[
\hat{\alpha}_x, \hat{\beta}_x, \hat{\kappa}_t; \text{compute } \hat{y}_{xt} \downarrow \\
\text{update } \hat{\alpha}_x; \text{compute } \hat{y}_{xt} \\
\text{update } \hat{\kappa}_t, \text{ adjust s.t. } \sum_{t=t_i}^{t_n} \kappa_i = 0; \text{compute } \hat{y}_{xt} \\
\text{update } \hat{\beta}_x; \text{compute } \hat{y}_{xt} \\
\text{compute } D(y_{xt}, \hat{y}_{xt}) \downarrow \\
\text{repeat; stop when } D(y_{xt}, \hat{y}_{xt}) \text{ converges}
\]

Where

\[
y_{xt} = \log \hat{m}_{xt}, \hat{y}_{xt} = \hat{n}_{xt}, D(y_{xt}, \hat{y}_{xt}) = \sum_{x,t} w_{xt} (y_{xt} - \hat{y}_{xt})^2
\]

with weights

\[
w_{xt} = d_{xt} \quad \text{(or } = 1).
\]

For a typical parameter, we use the updating algorithm:

\[
\text{updated } (\theta) = \theta - \frac{\partial D}{\partial \theta} \left/ \frac{\partial^2 D}{\partial \theta^2} \right.
\]
1) Proportion of the total temporal variance explained by the 1st SVD component:

$$\frac{S_1^2}{\sum_{all, i} S_i^2} \times 100\%.$$

(Not a good indicator of goodness of fit.)

2) Standardised deviance residuals

$$\hat{\varepsilon}_{xt} = \text{sign}(y_{xt} - \hat{y}_{xt}) \sqrt{\text{dev}(x,t)/\phi}$$

(we could also use standardised SVD residuals)

3) Plot differences between actual total and expected total deaths for each time period, t.
PROJECTIONS

Time series (ARIMA)

\[\{ \hat{\kappa}_t : t \in [t_1, t_n] \} \mapsto \{ \hat{\kappa}_{t_n+s} : s > 0 \}. \]

and

(Lee and Carter (1992))

Originally used extrapolations

\[m_{x,t_n+s} = \exp(\alpha_x + \beta_x \hat{\kappa}_{t_n+s}), \ s > 0 \]

\[m_{x,t_n+s} = \exp(\alpha_x + \beta_x \hat{\kappa}_{t_n}) \exp\{\beta_x (\hat{\kappa}_{t_n+s} - \hat{\kappa}_{t_n})\}, \ s > 0 \]

\[m_{x,t_n+s} = \left[\prod_{t=t_1}^{t_n} \hat{m}^{1/n} \exp(\beta_x \hat{\kappa}_{t_n}) \right] \exp\{\beta_x (\hat{\kappa}_{t_n+s} - \hat{\kappa}_{t_n})\}, \ s > 0. \]
Construct mortality rate projections

\[\hat{m}_{x,t_n+s} = \hat{m}_{x,t_n} \exp\{\hat{\beta}_x (\hat{\kappa}_{t_n+s} - \hat{\kappa}_{t_n})\}, \ s > 0 \]

by alignment with the latest available mortality rates.

Note

\[F(x, t_n + s) = \exp\{\hat{\beta}_x (\hat{\kappa}_{t_n+s} - \hat{\kappa}_{t_n})\}, \ s > 0 \]

is a mortality reduction factor, as widely used in the UK and elsewhere.

For ARIMA(0,1,0) with drift parameter \(\lambda \)

\[F(x, t_n + s) = \exp(\hat{\beta}_x \hat{\lambda}s), \ s > 0, \]
POISSON SETTING

(Brouhns et al (2002a))

Define

\[Y_{xt} = D_{xt}, \quad E(Y_{xt}) = e_{xt} \exp(\alpha_x + \beta_x \kappa_t), \quad \text{Var}(Y_{xt}) = \phi E(Y_{xt}) \]

with log-link and non-linear predictor

\[\eta_{xt} = \log e_{xt} + \alpha_x + \beta_x \kappa_t. \]

Perform iterative process with

\[y_{xt} = d_{xt}, \quad \hat{y}_{xt} = \hat{d}_{xt} = e_{xt} \exp(\hat{\alpha}_x + \hat{\beta}_x \hat{\kappa}_t) \]

\[
D(d_{xt}, \hat{d}_{xt}) = \sum_{x,t} 2w_{xt} \left\{ d_{xt} \log \left(\frac{d_{xt}}{\hat{d}_{xt}} \right) - (d_{xt} - \hat{d}_{xt}) \right\}
\]

with weights

\[w_{xt} = \begin{cases}
1, & e_{xt} > 0 \\
0, & e_{xt} = 0
\end{cases} \]
APPLICATIONS

England and Wales mortality experience by gender, with grouped ages

LC: Original Lee-Carter model (Gaussian)
GW: Gaussian bilinear version of Lee-Carter with weights $w_{xt} = d_{xt}$
PB: Poisson bilinear version of Lee-Carter

Plots show

- estimates
- residual plots
- comparative log mortality reduction factor projections for 2020 – using ARIMA (1,1,0) time series models
- age-specific log mortality rate profiles.
E+W female mortality experience (LC)

- \[\alpha \]
- \[\beta \]
- \[\kappa \]

Graphs

1. **Alpha** vs. age
 - Y-axis: \(-9\) to \(-1\)
 - X-axis: 0 to 90

2. **Beta** vs. age
 - Y-axis: \(0.00\) to \(0.14\)
 - X-axis: 0 to 90

3. **Kappa** vs. calendar year
 - Y-axis: \(-25\) to \(10\)
 - X-axis: 1950 to 2020

4. **(actual-expected) total deaths**
 - Y-axis: \(-20000\) to \(20000\)
 - X-axis: 1950 to 2000

Legend

- Solid line: actual deaths
- Dotted line: expected deaths
E+W male mortality experience (LC)

- Graphs showing trends in mortality rates over age and calendar year.
AGENDA

• Mortality Trends
• Data and Notation
• Lee-Carter Model: Base
 • Lee-Carter Model: Advanced
• Lee-Carter Model: Cohort Effects
• Lee-Carter Model: Risk Measurement
• Concluding Comments
4. LEE-CARTER MODELS: ADVANCED

DOUBLE BILINEAR STRUCTURES

(e.g. Booth et al. (2002), Renshaw & Haberman (2003c & d))

The LC model structure may be expanded to

\[\eta_{xt} = \alpha_x + \sum_{i=1}^{2} \beta_x^{(i)} \kappa_t^{(i)} \]

under the Gaussian setting, or equivalently

\[\eta_{xt} = \log e_{xt} + \alpha_x + \sum_{i=1}^{2} \beta_x^{(i)} \kappa_t^{(i)} \]

under the Poisson setting.
DOUBLE BILINEAR STRUCTURES (continued)

Fitting is possible by expanding the previous methods: either by incorporating the 2nd SVD components into the model structure, or through the inclusion of additional stages in the core of the iterative fitting methods.

Univariate or multivariate time series

\[
\{(\hat{\kappa}_t^{(1)}, \hat{\kappa}_t^{(2)}) : t \in [t_1, t_n]\} \mapsto \{(\hat{\kappa}_{t_n+s}^{(1)}, \hat{\kappa}_{t_n+s}^{(2)}): s > 0\}
\]

are then applied, and the mortality reduction factor

\[
F(x, t_n + s) = \exp \sum_{i=1}^{2} \beta_x^{(i)} (\hat{\kappa}_{t_n+s}^{(i)} - \hat{\kappa}_{t_n}^{(i)}), \ s > 0
\]

used to project mortality rates.
AGENDA

- Mortality Trends
- Data and Notation
- Lee-Carter Model: Base
- Lee-Carter Model: Advanced
- Lee-Carter Model: Cohort Effects
- Lee-Carter Model: Risk Measurement
- Concluding Comments
6. MODELLING COHORT EFFECTS IN LC FRAMEWORK
AGE-PERIOD-COHORT MODELS

Renshaw & Haberman (2006)
The Lee-Carter structure may be expanded to

\[M : \eta_{xt} = \alpha_x + \beta_{x}^{(0)} \nu_{t-x} + \beta_{x}^{(1)} \kappa_t \]

under the Gaussian setting, or equivalently,

\[M : \eta_{xt} = \log e_{xt} + \alpha_x + \beta_{x}^{(0)} \nu_{t-x} + \beta_{x}^{(1)} \kappa_t \]

under the Poisson setting.

The age-cohort substructure
AC: \(\beta_{x}^{(1)} = 0 \)
is also of interest, while we recall that for the standard model
LC: \(\beta_{x}^{(0)} = 0 \).
FITTING AGE-COHORT MODELS (AC)

Note the similarity with LC structure, with κ_t replacing κ_t. Thus

$$AC : \eta_{xt} = \alpha_x + \beta_x t_{t-x}$$

or

$$AC : \eta_{xt} = \log e_{xt} + \alpha_x + \beta_x t_{t-x}$$

subject to the constraints

$$t_{t-k} = 0, \sum_x {\beta_x} = 1.$$

Fitting then follows by adjusting the core of the iterative fitting method in terms of t_{t-x}.
FITTING AGE-PERIOD-COHORT MODELS

Fitting is problematic because of the relationship

cohort = (period – age) or \(z = t - x \)

between the three main effects.

We resort to a two-stage fitting strategy, in which \(\alpha_x \) is estimated first, according to the original Lee-Carter SVD approach, thus

\[
\hat{\alpha}_x = \log \prod_{t=t_1}^{t_n} \hat{m}_{xt}^{1/n}.
\]

The remaining parameters can then be estimated subject to the parameter constraints

\[
\sum_x \beta_x^{(0)} = 1, \sum_x \beta_x^{(1)} = 1 \text{ and } t_{t_1-x_k} = 0 \text{ or } \kappa_{t_1} = 0.
\]

Effective starting values are obtained by setting \(\beta_x^{(0)} = \beta_x^{(1)} = 1 \) and fitting \(H_0 \) to generate starting values for \(t_z \) and \(\kappa_t \).
PROJECTIONS

Use separate ARIMA time series

\[\{\hat{K}_t : t \in [t_1, t_n]\} \rightarrow \{\hat{K}_{t_n+s} : s > 0\}, \]

\[\{\hat{t}_z : z \in [t_1 - x_k, t_n - x_1]\} \rightarrow \{\hat{i}_{t_n-x_1+s} : s > 0\}, \]

then

\[F(x, t_n + s) = \exp\{\hat{\beta}_x^{(0)} (\hat{t}_{t_n-x+s} - \hat{t}_{t_n-x}) + \hat{\beta}_x^{(1)} (\hat{K}_{t_n+s} - \hat{K}_{t_n})\}, \ s > 0 \]

where

\[\hat{t}_{t_n-x+s} = \hat{t}_{t_n-x+s}, \ s \leq x-x_1 \]

\[\hat{i}_{t_n-x+s} = \hat{i}_{t_n-x+s}, \ s > x-x_1. \]
APPLICATIONS

Data set
- UK mortality experience by gender (and single year of age)

Error structure
- Poisson setting

Residual plots
- Age period LC structure fails to capture cohort effects (ripple effect for YoB prior to 1950s)
- Age cohort AC structure shows a ripple period effect
- Note features of M structure.
UK female mortality experience (LC) - residual plots
UK female mortality experience (AC)- residual plots

+ve residuals

-ve residuals

age

year

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

UK female mortality experience (M)- residual plots

- Residuals vs. calendar year
- Residuals vs. age
- Residuals vs. year of birth
Model fitting

- Estimates are conditional on order of specification of 3 main effects

\[H_0 : \eta_{xt} = \log e_{xt} + \alpha_x + \iota_{t-x} + \kappa_t \]

- Need to condition on one of main effects, e.g. age effects
UK female mortality experience (H(0))

(a) linear predictor: \eta(x,t) = \text{offset} + \alpha(x) + \iota(t-x) + \kappa(t)

(b) linear predictor: \eta(x,t) = \text{offset} + \kappa(t) + \alpha(x) + \iota(t-x)

(c) linear predictor: \eta(x,t) = \text{offset} + \iota(t-x) + \kappa(t) + \alpha(x)
APPLICATIONS (continued)

Time Series Forecasts

- For $\kappa_t : y_t = a_0 + a_1 t + \sum_{i=1}^{p} \phi_i y_{t-i}$ with $p=2$

 $$= \kappa_t - \kappa_{t-1}$$

($a_1 \neq 0$ for males; $a_1 = 0$ for females)

- For ι_z ARIMA (1,1,0)
(a) log(mortality rates): projections by age-period & age-cohort

E+W female population study

KEY
- age-cohort (2025)
- age-period (2025)

E+W male population study

KEY
- age-cohort (2025)
- age-period (2025)

(b) log(mortality rates): projections by age-period & age-period-cohort

E+W female population study

KEY
- age-period-cohort (2025)
- age-period (2025)

E+W male population study

KEY
- age-period-cohort (2025)
- age-period (2025)

Latest and projected $\log \mu_{xt}$ age profiles:
(a) LC and AC modelling; (b) LC and M modelling
England and Wales population, parameter estimates, model M: (a) females; (b) males
Life expectancies at age 65 for a range of periods, computed by period and by cohort under age-period (LC) and age-period-cohort (M) modelling.
AGENDA

- Mortality Trends
- Data and Notation
- Lee-Carter Model: Base
- Lee-Carter Model: Advanced
- Lee-Carter Model: Cohort Effects
- Lee-Carter Model: Risk Measurement
- Concluding Comments
RISK MEASUREMENT AND PREDICTION INTERVALS

- uncertainty in projections needs to be quantified i.e. by prediction intervals
- but analytical derivations are impossible
- 2 different sources of uncertainty need to be combined
 - errors in estimation of parameters of Lee Carter model
 - forecast errors in projected ARIMA model
- indices of interest (e.g. hazard rates, annuity values, life expectancies) are complex non linear functions of $\alpha_x, \beta_x, \kappa_t$ and ARIMA parameters.
DIFFERENT SIMULATION STRATEGIES

A) Let \hat{d}_x be fitted number of deaths.

Simulate response $d_x^{(j)}$ from Poisson (\hat{d}_x)

Compute $\mu_x^{(j)}$

Fit model.

Repeat for $j = 1, ..., N$
B) Simulate $e^{(j)}$ vector of $N(0,1)$ deviates

Let C be the Cholesky factorisation matrix of the variance-covariance matrix

Compute simulated model parameters

$$\theta^{(j)} = \hat{\theta} + \sqrt{\varphi} C e^{(j)}$$

where φ is optional scale parameter

Repeat for $j = 1, ..., N$
C) Let r_x be the deviance residuals

Sample with replacement to get $r_x^{(j)}$

Map from $r_x^{(j)}$ to $d_x^{(j)}$ for each x

Compute $\mu_x^{(j)}$

Fit Model.

Repeat for $j = 1, \ldots, N$
UK MALE PENSIONERS: COMPARISON OF SIMULATED 2.5, 50, 97.5 PERCENTILES AND M.L.E. ESTIMATES

(a) Life expectancy, age 65, year 2003

(b) 4 percent fixed rate life annuity, age 65, year 2003
UK MALE PENSIONERS: COMPARISON OF SIMULATED 2.5, 50, 97.5 PERCENTILES AND M.L.E. ESTIMATES

(a) Life expectancy, age 75, year 2003

(b) 4 percent fixed rate life annuity, age 75, year 2003
UK MALE PENSIONERS: COMPARISON OF SIMULATED 2.5, 50, 97.5 PERCENTILES AND M.L.E. ESTIMATES

(a) Life expectancy, age 65, year 2020

(b) 4 percent fixed rate life annuity, age 65, year 2020
AGENDA

• Mortality Trends
• Data and Notation
• Lee-Carter Model: Base
• Lee-Carter Model: Advanced
• Lee-Carter Model: Cohort Effects
• Lee-Carter Model: Risk Measurement

• Concluding Comments
• Prediction intervals for Lee-Carter models – Bayesian methods.

• Model error – essential to investigate more than one modelling framework.

• Extreme ages – extrapolation methods needed.

• Forecasting structural changes.

• Time series methods and long forecasting periods.
• Effect of β_x on smoothness of projected age profiles.

• Performance of forecasting methods.

• Quality and appropriateness of data.

• Sources of error – process, parameter, model, judgement.
REFERENCES

REFERENCES (continued)

REFERENCES (continued)

